
ORIE 5355: People, Data, & Systems
Lecture 7: Recommendations – from predictions 

to decisions Part 2
Nikhil Garg

Course webpage: https://orie5355.github.io/Fall_2021/

Re-numbering 
lectures

https://orie5355.github.io/Fall_2021/


Announcements

• Guest lecture Neal Parikh on Monday 10/04
• Regular class-time

• In person only

• Additional office hours (me): Fridays before homeworks are due
• Friday 10/1

• 1:30 – 2:30 pm

• Zoom only, available on canvas

• Homework 2 due Tuesday 10/5

• Quiz 2 next week as well



HW1 final estimates histogram

A lot of pollster 
discretion!

Even though we all 
had the same data, 
learned the same 
methods in class, 
and walked through 
the same analyses, 
a large range of 
estimates! 



Dealing with capacity constraints



Overview 

• What’s the challenge, exactly?

• Solving an “easier” problem: “maximum weight matching in a 
bipartite graph”

• Insights from the easier problem to real-life applications



An example 

• In the homework, we 
ask you to first 
recommend using the 
“naïve” method of just 
recommending best 
prediction for each user

• You’ll observe a plot like 
the following



The challenge

• In many (non-online-media) settings, you are recommending “items” 
with capacity constraints:
• You have a finite number of each item in your warehouse

• An AirBnb can only be booked by one customer at a time

• Workers can’t work for every client; a client can only hire 1 person

• People on dating apps – can’t talk to everyone

• If you ignore these capacity constraints, then everyone may be 
recommended the same (limited) item

Some people will be left out

• (How) should you factor in capacity in your recommendations?



The challenge, formally (simple version)

• You have 𝑁 users and 𝑀 items, but only 1 copy of each item

• You want to recommend 1 item j(i) to each user

• Each user i will consume the that you recommend them

• You want to maximize the sum of predicted ratings of 
consumed items

σ𝑖 r𝑖𝑗(𝑖)

• However, each item can only be recommended once
𝑗 𝑖 ≠ 𝑗 𝑖′ unless 𝑖 = 𝑖′



Solving the simple case

It turns out that this 
simple case is called 
“maximum weight 
matching”

Draw a graph with users 
on one side and items on 
the other

OSA | Simulation and FPGA-Based 
Implementation of Iterative Parallel 
Schedulers for Optical Interconnection 
Networks (osapublishing.org)

Users Items

rij

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76


Solving the simple case

It turns out that this 
simple case is called 
“maximum weight 
matching”

Draw a graph with users 
on one side and items on 
the other

Find the “matching” that 
maximizes sum of edge 
weights

Users Items

rij

Users Items

OSA | Simulation and FPGA-Based 
Implementation of Iterative Parallel 
Schedulers for Optical Interconnection 
Networks (osapublishing.org)

scipy.optimize.linear_
sum_assignment —
SciPy v1.7.1 Manual

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html


Insights from the simple case

In general, the actual solution might 
be combinatorial – a complex 
function of all the joint preferences

• Some users are not matched with 
their most preferred item!

• Some items are not matched with 
the user that likes it the most!

• If a user likes multiple items 
similarly, maybe they get their 2nd

choice

• If only 1 user likes some item, make 
sure that item and user are 
matched

Users Items

rij

Users Items

OSA | Simulation and FPGA-Based 
Implementation of Iterative Parallel 
Schedulers for Optical Interconnection 
Networks (osapublishing.org)

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76


Challenges in using max weight matchings

• Everyone doesn’t show up at once
New users come in tomorrow – have to leave items for them

• You can’t “match” people, only recommend them items
Someone may not consume the item!

• “Capacity” constraints are also soft
• New items are shipped to warehouse all the time

• Maybe you can spend more money to expedite shipment

• Computational constraints in rerunning large scale max weight 
matchings with every new user



What to do in practice

• Finding an “great” solution requires a lot of careful data science + 
modeling work

• Some reasonable heuristics:
“Batching”: If you don’t have to give recommendations immediately, wait for 
some number of users to show up and solve max weight matching (for example, 
every hour)

“Index” policies: For each user, create a “score” for each item and just choose 
recommend the item(s) with the highest score(s)



Index policies

• We want a score (index) between each item j and user i: sij

• Then, for each item, pick the item with the max score: argmax𝑗 sij

• We’ve already seen an example: if the only thing that matters is 
predicted rating, then sij = rij

• Why index policies?
• They’re efficient: for each user, only need to consider their scores

• They can be explained to users

• All information about other users is contained in how score is constructed



Constructing index policies

What matters in constructing an index policy?
• The higher the ratings by other users for an item, the smaller sij should be

• The less capacity C𝑗 left for the item, the smaller sij should be

An example score function

sij = 𝛼𝑗
𝑟𝑖𝑗

ഥ𝑟𝑗
𝐶𝑗
𝛽

where 𝛼𝑗 , 𝛽 are some (learned) parameters over time

𝛼𝑗: Item is “special” and should be over-recommended

𝛽 : Relative importance of capacity. (𝛽 = 0 means ignore capacity)

Many possible score functions! Should be application specific



Capacity constraints lessons

• If you just recommend each user their highest predicted scores, then 
you might not be globally efficient

• Even if you can’t implement it, taking intuition from the “optimal” 
solution is often valuable

• Index policies: even if “optimal” solution requires combinatorial 
constraints, “practical” solution can decompose the problem



Multi-sided preferences



Multi-sided preferences

• In many modern online markets, both sides have preferences
Freelancing markets (workers matched with clients), dating apps, volunteer 
platforms, etc

• A match only happens if both sides like each other
And have capacity…



The challenge, formally (simple version)

• You have 𝑁 workers and 𝑁 clients
• Each worker can only work with 1 client; each client only hires 1 

worker

• Each side has preferences (predicted ratings) over the other 
side

• You want to create “good” matches
• Good for who? Workers? Clients? Some combination?

• Easier goal: create “stable” matches



“Stable matching” in 1 slide

• Stable matching:
• Given rank order preferences from each 

person on each side

• Match the sides such that matches are 
“stable”: No potential pair wants to abandon 
their current partners for each other. 

• Efficient to find: “Gale-Shapley algorithm”

• Used to allocate:
Medical students to residencies

Students in NYC to high schools



Challenges in using stable matching

Same as from using maximum weight matchings
• Everyone doesn’t show up at once

New users come in tomorrow – have to leave items for them

• You can’t “match” people, only recommend them items

Someone may not consume the item!

• “Capacity” constraints are also soft

• New items are shipped to warehouse all the time

• Maybe you can spend more money to expedite shipment

• Computational constraints in rerunning large scale stable matchings with every new user

Just more complicated with both sides now having preferences



Intuition from stable matching to 
recommendations
What matters in constructing an index policy?

• The higher the ratings by other workers/clients, the smaller sij should be
• If either worker i or client j has been recommended to many other people in 

the past, the smaller sij should be
Equivalent of “capacity”

• Now, both i’s rating for j and j’s rating for i matter
• From stable matching: both i and j matter – one-sided high score can’t “make 

up” for the other side being a low score

An example score function

sij = min
𝛼𝑗𝑟𝑖𝑗𝐶𝑗

𝛽

𝑟𝑗
,
𝛼𝑖𝑟𝑗𝑖𝐶𝑖

𝛽

ഥ𝑟𝑖



Diversity in recommendations



Diversity of recommendations

• If you do the naïve method and 
recommend multiple items to each 
user, then you’re not going to 
recommend a diverse set of items

• Why? If you have a single user vector 
ui, then if two items 𝑗 and 𝑘 both 
have large dot products ui ⋅ 𝑣𝑗 and 
ui ⋅ 𝑣𝑘, then they are likely to be 
similar, 𝑣𝑗 ≈ 𝑣𝑘

With the MovieLens dataset and 
recommending 2 items to each user. The 
more similar 2 items are, the more likely 
they are to be recommended together 
compared to their “marginal” distributions



Improving diversity of recommendations

Many possible approaches

• Create a “short list” of items based on just 
the prediction (“relevance”), and then select 
a diverse set from the short list 

• Pre-select topics and then most relevant 
within each topic

• Start from most relevant item, filter other 
items that are too similar to items already 
recommended



Summary of recommendations

There are 3 steps to building a recommendation system:

• Choose the data that you will use
What does the data imply about people’s opinions and future desires?

• Train a model to predict ratings between pairs of items and users
Different approaches (item- and user similarity, matrix factorization)

Can also combine approaches

• Recommend items based on predictions and other concerns
Capacity constraints, diversity, fairness considerations, long-term objectives



Questions?


