# ORIE 5355: People, Data, \& Systems Lecture 7: Recommendations - from predictions to decisions Part 2 

Nikhil Garg
Course webpage: https://orie5355.github.io/Fall 2021/

Re-numbering lectures

## Announcements

- Guest lecture Neal Parikh on Monday 10/04
- Regular class-time
- In person only
- Additional office hours (me): Fridays before homeworks are due
- Friday 10/1
- 1:30-2:30 pm
- Zoom only, available on canvas
- Homework 2 due Tuesday 10/5
- Quiz 2 next week as well


## HW1 final estimates histogram

A lot of pollster discretion!

Even though we all had the same data, learned the same methods in class, and walked through the same analyses, a large range of estimates!

Histogram of What is your preferred estimate from Part C of the homework?


What is your preferred estimate from Part C of the homework?

## Dealing with capacity constraints

## Overview

- What's the challenge, exactly?
- Solving an "easier" problem: "maximum weight matching in a bipartite graph"
- Insights from the easier problem to real-life applications


## An example

- In the homework, we ask you to first recommend using the "naïve" method of just recommending best prediction for each user
- You'll observe a plot like the following



## The challenge

- In many (non-online-media) settings, you are recommending "items" with capacity constraints:
- You have a finite number of each item in your warehouse
- An AirBnb can only be booked by one customer at a time
- Workers can't work for every client; a client can only hire 1 person
- People on dating apps - can't talk to everyone
- If you ignore these capacity constraints, then everyone may be recommended the same (limited) item

Some people will be left out

- (How) should you factor in capacity in your recommendations?


## The challenge, formally (simple version)

- You have $N$ users and $M$ items, but only 1 copy of each item
- You want to recommend 1 item j(i) to each user
- Each user i will consume the that you recommend them
- You want to maximize the sum of predicted ratings of consumed items

$$
\sum_{i} \mathrm{r}_{i j(i)}
$$

- However, each item can only be recommended once

$$
j(i) \neq j\left(i^{\prime}\right) \text { unless } i=i^{\prime}
$$

## Solving the simple case

It turns out that this simple case is called "maximum weight matching"

Draw a graph with users on one side and items on the other


## Solving the simple case

It turns out that this simple case is called "maximum weight matching"

Draw a graph with users on one side and items on the other

Find the "matching" that maximizes sum of edge weights


## Insights from the simple case

In general, the actual solution might be combinatorial - a complex function of all the joint preferences

- Some users are not matched with their most preferred item!
- Some items are not matched with the user that likes it the most!
- If a user likes multiple items similarly, maybe they get their $2^{\text {nd }}$ choice
- If only 1 user likes some item, make sure that item and user are matched



## Challenges in using max weight matchings

- Everyone doesn't show up at once

New users come in tomorrow - have to leave items for them

- You can't "match" people, only recommend them items

Someone may not consume the item!

- "Capacity" constraints are also soft
- New items are shipped to warehouse all the time
- Maybe you can spend more money to expedite shipment
- Computational constraints in rerunning large scale max weight matchings with every new user


## What to do in practice

- Finding an "great" solution requires a lot of careful data science + modeling work
- Some reasonable heuristics:
"Batching": If you don't have to give recommendations immediately, wait for some number of users to show up and solve max weight matching (for example, every hour)
"Index" policies: For each user, create a "score" for each item and just choose recommend the item(s) with the highest score(s)


## Index policies

- We want a score (index) between each item j and user i : $\mathrm{s}_{\mathrm{ij}}$
- Then, for each item, pick the item with the max score: $\operatorname{argmax}_{j} \mathrm{~s}_{\mathrm{ij}}$
- We've already seen an example: if the only thing that matters is predicted rating, then $s_{i j}=r_{i j}$
-Why index policies?
- They're efficient: for each user, only need to consider their scores
- They can be explained to users
- All information about other users is contained in how score is constructed


## Constructing index policies

What matters in constructing an index policy?

- The higher the ratings by other users for an item, the smaller $\mathrm{s}_{\mathrm{ij}}$ should be
- The less capacity $C_{j}$ left for the item, the smaller $\mathrm{s}_{\mathrm{ij}}$ should be

An example score function

$$
\mathrm{s}_{\mathrm{ij}}=\alpha_{j}\left[\frac{r_{i j}}{\overline{r_{j}}}\right] C_{j}^{\beta}
$$

where $\alpha_{j}, \beta$ are some (learned) parameters over time
$\alpha_{j}$ : Item is "special" and should be over-recommended
$\beta$ : Relative importance of capacity. ( $\beta=0$ means ignore capacity)
Many possible score functions! Should be application specific

## Capacity constraints lessons

- If you just recommend each user their highest predicted scores, then you might not be globally efficient
- Even if you can't implement it, taking intuition from the "optimal" solution is often valuable
- Index policies: even if "optimal" solution requires combinatorial constraints, "practical" solution can decompose the problem

Multi-sided preferences

## Multi-sided preferences

- In many modern online markets, both sides have preferences

Freelancing markets (workers matched with clients), dating apps, volunteer platforms, etc

- A match only happens if both sides like each other

And have capacity...

## The challenge, formally (simple version)

- You have $N$ workers and $N$ clients
- Each worker can only work with 1 client; each client only hires 1 worker
- Each side has preferences (predicted ratings) over the other side
- You want to create "good" matches
- Good for who? Workers? Clients? Some combination?
- Easier goal: create "stable" matches


## "Stable matching" in 1 slide

- Stable matching:
- Given rank order preferences from each person on each side
- Match the sides such that matches are "stable": No potential pair wants to abandon their current partners for each other.
- Efficient to find: "Gale-Shapley algorithm"
- Used to allocate:

Medical students to residencies
Students in NYC to high schools


## Challenges in using stable matching

## Same as from using maximum weight matchings

- Everyone doesn't show up at once

New users come in tomorrow - have to leave items for them

- You can't "match" people, only recommend them items

Someone may not consume the item!

- "Capacity" constraints are also soft
- New items are shipped to warehouse all the time
- Maybe you can spend more money to expedite shipment
- Computational constraints in rerunning large scale stable matchings with every new user

Just more complicated with both sides now having preferences

## Intuition from stable matching to recommendations

What matters in constructing an index policy?

- The higher the ratings by other workers/clients, the smaller $\mathrm{s}_{\mathrm{ij}}$ should be
- If either worker i or client $j$ has been recommended to many other people in the past, the smaller $\mathrm{s}_{\mathrm{ij}}$ should be

Equivalent of "capacity"

- Now, both i's rating for j and j's rating for i matter
- From stable matching: both i and j matter - one-sided high score can't "make up" for the other side being a low score
An example score function

$$
\mathrm{s}_{\mathrm{ij}}=\min \left(\frac{\alpha_{j} r_{i j} C_{j}^{\beta}}{\overline{r_{j}}}, \frac{\alpha_{i} r_{j i} C_{i}^{\beta}}{\overline{r_{i}}}\right)
$$

Diversity in recommendations

## Diversity of recommendations

- If you do the naïve method and recommend multiple items to each user, then you're not going to recommend a diverse set of items
- Why? If you have a single user vector $\mathrm{u}_{\mathrm{i}}$, then if two items $j$ and $k$ both have large dot products $u_{i} \cdot v_{j}$ and $\mathrm{u}_{\mathrm{i}} \cdot v_{k}$, then they are likely to be similar, $v_{j} \approx v_{k}$


With the MovieLens dataset and recommending 2 items to each user. The more similar 2 items are, the more likely they are to be recommended together compared to their "marginal" distributions

## Improving diversity of recommendations

Many possible approaches

- Create a "short list" of items based on just the prediction ("relevance"), and then select a diverse set from the short list
- Pre-select topics and then most relevant within each topic
- Start from most relevant item, filter other
 items that are too similar to items already recommended


## Summary of recommendations

There are 3 steps to building a recommendation system:

- Choose the data that you will use

What does the data imply about people's opinions and future desires?

- Train a model to predict ratings between pairs of items and users

Different approaches (item- and user similarity, matrix factorization)
Can also combine approaches

- Recommend items based on predictions and other concerns

Capacity constraints, diversity, fairness considerations, long-term objectives

## Questions?

